【最新】Loraモデル学習をGoogle Colabで作る方法解説。Kohya LoRA Dreambooth v15.0.0使用。【Stable Diffusion】

Shinano Matsumoto・晴れ時々ガジェット
19 Apr 202313:40

TLDRThis tutorial explains how to create a Kohya LoRA Dreambooth model using Google Colab with version 15.0.0. It covers the process of preparing an image, using the caption method for training, selecting the appropriate model, and adjusting settings for optimal learning. The guide also touches on the instance class method for learning multiple concepts and the importance of using well-balanced images for better training results.

Takeaways

  • 📌 The tutorial is about creating a Lora model using Google Colab with Kohya LoRA Dreambooth v15.0.0 and Stable Diffusion.
  • 🔗 Start by visiting the Kohya LoRA Dreambooth link in the video description and opening it in collaboration mode.
  • 🖼️ Prepare a square image (512x512 to 1024x1024) and compress it into a zip file, then upload it to Google Drive.
  • 💻 Check the mount drive and execute the initial setup by accessing Google Drive and following the on-screen instructions.
  • 🚫 Be aware that the process might get complex and time-consuming, especially for free users.
  • 📂 Choose the 'caption method' or 'instance class method' for learning, with the former being explained in this tutorial.
  • 🔍 Download the required model, such as Stable Diffusion 2.0 or anyLora, based on the content you wish to learn (anime, for example).
  • 📂 Upload the prepared zip file to Google Drive and provide the correct file path for the learning process.
  • 🏷️ Use the 'top converter' to automatically add captions and tags to the images for better learning.
  • 🖋️ Edit the generated caption and tag files for accuracy and to exclude any unwanted tags.
  • 🔢 Adjust the settings such as min, snr, gamma, and the learning rate to optimize the learning process.
  • 📈 Monitor the training process, and save the model at specific epochs for future use.

Q & A

  • What is the main topic of the video?

    -The main topic of the video is creating and using Kohya LoRA Dreambooth version 15.0.0 with Google Colab.

  • How does one begin the process with Kohya LoRA Dreambooth?

    -One begins by clicking on the Kohya LoRA Dreambooth link in the description and following the steps outlined in the video.

  • What kind of image should be prepared for the Kohya LoRA Dreambooth?

    -A square image of about 512x512 to 1024x1024 should be prepared and placed in a folder, then compressed into a zip file and uploaded to Google Drive.

  • What are the two methods mentioned for using Kohya LoRA Dreambooth?

    -The two methods mentioned are the caption method and the instance class method.

  • Which version of Stable Diffusion is recommended for users wanting to learn anime with Kohya LoRA Dreambooth?

    -Users wanting to learn anime should choose anyLora, which is considered the best for this purpose.

  • How does the caption method work in Kohya LoRA Dreambooth?

    -The caption method involves adding captions to images and allowing the model to learn from them, which can then be fine-tuned using various settings and parameters.

  • What is the purpose of the tag file created during the training process?

    -The tag file helps categorize and tag the images, making it easier for the model to understand and learn specific characteristics or features.

  • What are the effects of adjusting the min, snr, and gamma numbers in Kohya LoRA Dreambooth?

    -Adjusting these numbers affects the strength of the learning process. Smaller values result in a stronger effect, while larger values weaken the effect. The default is -1.

  • How does the instance class method differ from the caption method in Kohya LoRA Dreambooth?

    -The instance class method allows for the learning of multiple concepts simultaneously, which can be beneficial for certain types of customization and learning.

  • What is the significance of the 'save n epochs' setting in Kohya LoRA Dreambooth?

    -The 'save n epochs' setting determines the intervals at which the model's progress is saved. This allows users to track and review the model's learning progress at specific epochs.

  • What tips are given for optimizing the learning process in Kohya LoRA Dreambooth?

    -Tips include using a well-balanced full-body bust image with a varied background, and ensuring the base model and other settings are correctly configured for the type of learning desired.

Outlines

00:00

📝 Introduction to Kohya LoRA Dreambooth 15.0.0

This paragraph introduces the Kohya LoRA Dreambooth version 15.0.0, a tool for creating and training AI models with images. The speaker explains the initial steps, including accessing the Kohya Trainer through a link in the description and preparing an image folder compressed into a zip file. The paragraph emphasizes the importance of checking the mount drive and executing it, as well as understanding the different methods available for training, such as the caption method and the instance class method. The speaker also discusses the process of uploading the prepared zip file to Google Drive and the subsequent steps for model download and configuration.

05:00

🛠️ Customizing and Configuring the Model

The second paragraph delves into the customization and configuration of the Kohya LoRA Dreambooth model. It covers the process of selecting the appropriate model, such as Stable Diffusion 2.1 or anyLora, based on the user's preference for learning anime or other styles. The paragraph explains the importance of setting the correct paths for the base model and VAE if applicable. It also discusses the various settings that can be adjusted for the training process, including the activation word, the genre, symmetry options, and the learning image's treatment. The speaker provides insights into the impact of different settings on the learning process and encourages experimentation to achieve the desired results.

10:01

🚀 Starting the Training and Optimizing

This paragraph focuses on the actual training process and optimization of the Kohya LoRA Dreambooth model. It outlines the steps for starting the training, including setting the appropriate batch size and epochs for saving the model. The speaker discusses the trade-offs between GPU usage and training speed, as well as the importance of selecting the right optimizer and scheduler for the training process. The paragraph also touches on the option to test the model and the benefits of uploading the model to platforms like GitHub or Hugging Face. Finally, it highlights the advantages of the instance class method for learning multiple concepts simultaneously and the potential for fine-tuning specific aspects of the generated images using captions.

Mindmap

Keywords

💡Loraモデル

Loraモデルは、Google Colab上で学習を行う際に使用されるAIモデルの1つです。このモデルは、特定の画像を学習し、そのスタイルを再現する能力を持っています。ビデオスクリプトでは、Loraモデルを用いて、自作の画像を特定のスタイルに沿って学習する方法について説明しています。

💡Google Colab

Google Colabは、Googleが提供する無料のJupyter Notebook環境であり、クラウド上でプログラムを実行することができます。このプラットフォームは、機械学習やデータ分析に特化しており、簡単にAIモデルをトレーニングできるようになっています。ビデオスクリプトでは、Google Colabを用いてLoraモデルを学習する方法について説明されています。

💡Kohya Trainer

Kohya Trainerは、Loraモデルをトレーニングするためのツールです。このツールを使用することで、ユーザーは自社の画像を用いてAIモデルをカスタマイズすることができます。ビデオスクリプトでは、Kohya Trainerを通じてLoraモデルを利用する方法が説明されています。

💡Dreambooth

Dreamboothは、AIが画像を学習し、新しいアート作品を生成する際に使用されるシステムです。このシステムを利用することで、特定のスタイルやテーマに沿った画像を生成することができます。ビデオスクリプトでは、LoraモデルをDreambooth方式で使用する方法が説明されています。

💡Stable Diffusion

Stable Diffusionは、AIが画像を生成する際に使用される技術の一つです。この技術は、ある程度のランダム性を持ちながらも、安定して高品質な画像を生成することができます。ビデオスクリプトでは、Stable Diffusion技術を用いてLoraモデルをトレーニングする方法が説明されています。

💡caeption方法

caption方法とは、画像に付随するテキストデータを用いて、AIモデルをトレーニングする方法です。この方法では、画像下に記載されたテキスト(caption)を用いて、モデルが画像の内容を理解し、学習することができます。ビデオスクリプトでは、caption方法を使用してLoraモデルをトレーニングする手順が説明されています。

💡zip圧縮

zip圧縮は、データをコンパクトにまとめるための方法です。この方法を使用することで、複数のファイルを1つの圧縮ファイルにまとめることができ、保管や共有が便利になります。ビデオスクリプトでは、事前に準備された画像をzip圧縮にしてGoogle Driveにアップロードする手順が説明されています。

💡Google Drive

Google Driveは、Googleが提供するクラウドストレージサービスです。このサービスを利用することで、データをオンラインで保存し、どこからでもアクセスすることができます。ビデオスクリプトでは、Google Driveを使用して、Loraモデルの学習データやモデルファイルを保管する方法が説明されています。

💡anime

animeは、日本のアニメーションの略称であり、ビデオスクリプトでは、Loraモデルがアニメスタイルの画像を学習するための最適なモデルであることが示されています。アニメは独自のアートスタイルがあり、Loraモデルはそのようなスタイルを再現する能力を持っています。

💡vae

vaeは、可変自エンコーディング器(Variational Autoencoder)の略称であり、画像を学習・生成するためのAI技術の一つです。この技術は、データの潜在的な特徴を抽出し、新しいデータを作成することができます。ビデオスクリプトでは、vaeを用いてLoraモデルと併せて学習することができるかどうかが説明されています。

💡optimizer

optimizerは、機械学習において使用されるアルゴリズムの一つであり、最適解を求めるために使用されます。このアルゴリズムは、学習プロセスにおいてパラメータを更新し、モデルの性能を向上させます。ビデオスクリプトでは、optimizerの選択がLoraモデルの学習にどのように影響するかが説明されています。

Highlights

Kohya LoRA Dreambooth version 15.0.0 is used for Loraモデル学習 on Google Colab.

A link to Kohya LoRA Dreambooth's Kohya Trainer is provided in the description.

The process begins with creating a square image of 512 x 512 to 1024 x 1024 and compressing it into a zip file.

The zip file is uploaded to Google Drive for further use in the tutorial.

Version 15.0.0 has made significant improvements, but it's recommended for paid collaborations due to time limitations.

The tutorial covers both caption method and instance class method for Lora learning.

Stable Diffusion 1.1 and 2.0 options are available for model download.

AnyLora is recommended for those interested in learning anime styles.

The process involves uploading the prepared zip file to Google Drive and copying its path.

Tagged images from anime image sites can be automatically retrieved and added to the training data.

The caption and tag files are created and can be edited for accuracy.

The model can be customized with various settings such as min, snr, gamma, and the optimizer type.

Lora is recommended for its efficiency and smaller model size.

The learning process can be adjusted with settings like the learning rate and batch size.

The instance class method allows for learning multiple concepts simultaneously.

Adding captions to images can make certain features easier to modify with the roller.

The quality of the learning process depends on the original image used, with a preference for well-balanced full-body busts and varied backgrounds.