SD3模型到底如何?StableDiffusion3全面评测!如何使用ComfyUI遍历题词 | 模型?(附赠测试工作流)! #aigc #stablediffusion3
TLDR本期视频全面评测了新开源的StableDiffusion第三代模型(SD3),并介绍了如何使用ComfyUI进行批处理操作以测试模型。讲解了SD3模型的新特性,如增强的VAE解码、三种CLIP编码器和更大的训练数据量。同时,提供了不同精度模型的下载建议,并分享了使用国内资源网站'哩布哩布'下载模型的便利。视频还展示了如何通过ComfyUI的批处理和题词遍历来生成图像,并对比了SD3与其他模型的生成效果,发现SD3在风格表现上尚需优化。
Takeaways
- 😀 StableDiffusion3(SD3)模型是最新开源的AI绘画模型,基于SDXL架构进行了增强。
- 🔍 SD3模型在VAE解码部分进行了显著改进,通道数增至16,提升了对题词的理解及元素融合能力。
- 📈 SD3引入了三种CLIP编码器,相较于SDXL增加了文本编码器,使得模型对题词的控制更精确。
- 🌐 训练数据量达到2B(20亿参数),比SDXL有大幅提升,但对硬件要求也更高。
- 💾 huggingface官网提供了不同版本的SD3模型下载,包括FP16和8位精度的模型,以适应不同硬件条件。
- 🔍 对于国内用户,推荐使用哩布哩布AI网站下载模型,资源丰富且访问速度快。
- 🛠️ ComfyUI提供了样本工作流,包括基础、prompt强化和放大工作流,方便用户进行不同需求的图像生成。
- 🎨 通过ComfyUI的Dynamic Prompts插件,可以实现题词的遍历和批处理操作,提高图像生成的多样性和效率。
- 🔧 SD3模型在细节处理上还有待优化,如人物肖像和远景构图的表现力有待提升。
- 📊 通过多模型比较测试,SDXL在风格表现上更优秀,而SD3在某些方面表现平平,可能需要进一步调整和优化。
- 🔗 哩布哩布网站支持SD3模型的在线生成,提供了方便快捷的图像生成方式,效果与本地生成有所差异。
Q & A
SD3模型的主要改进是什么?
-SD3模型的主要改进包括在VAE解码部分进行了增强,通道增加到16;对题词的理解以及元素融合更加完善,可以通过题词更精确控制画面部分;使用了三种CLIP编码,增加了文本编码器;训练数据量增大到2B,即20亿参数。
ComfyUI的批处理操作是如何配合题词测试模型的?
-ComfyUI的批处理操作可以通过插件如Dynamic Prompts来实现题词的遍历,使用通配符的文件进行随机调用不同的题词,实现对模型的批量测试。
为什么需要下载额外的CLIP模型?
-如果下载的模型文件不包含CLIP编码,即没有打包任何的CLIP模型,则需要单独下载CLIP l、CLIP g和T5的CLIP模型,并加载到正向和负向文本编码器中。
如何通过ComfyUI遍历题词?
-可以通过安装Dynamic Prompts插件,在ComfyUI中使用通配符节点来遍历题词,将通配符文件名通过特定的格式输入到提示词中,实现题词的自动遍历。
为什么SD3模型的负面提词强度需要降低?
-由于SD3模型对题词的理解非常强,为了避免负面提词过于突出,操作中将负面提词的强度降得很低,以实现更平衡的图像生成效果。
在huggingface官网上如何选择SD3模型的不同版本?
-在huggingface官网上,可以通过查看模型文件的后缀来选择不同版本的SD3模型,例如无后缀的表示不带CLIP编码,带有'clip'后缀的表示带有基础的CLIP编码,而带有'T5XXL'后缀的则是带有三种CLIP编码的第三代模型。
为什么说SD3模型对显存的要求较高?
-由于SD3模型参数量大,即使是FP16半精度的模型大小也达到了15G,因此对显存的要求较高,至少需要12G显存,8G显存虽然可以但可能需要使用虚拟内存,影响运行速度。
如何使用ComfyUI进行图像的批处理生成?
-通过ComfyUI中的FIZZ节点进行批次调度,结合字符串连锁和关键帧设置,可以实现图像的批处理生成,一次性生成多张不同题词的图像。
为什么在测试中SD3模型的效果可能不如SDXL和Cascade?
-可能是因为SD3模型是一个基础模型,对一些细节没有进行过多的调校,或者测试中使用的题词和模型配置不完全匹配,导致SD3模型的效果不如SDXL和Cascade。
如何通过哩布哩布网站下载模型和题词文档?
-哩布哩布是一个国内的AI绘画模型资源网站,可以找到常用的模型和题词文档,下载后解压即可使用,支持多种类型的题词文档,如服装、人物、风格等。
Outlines
🚀 Introduction to SD3 Model and ComfyUI Batch Processing
The video begins with an introduction to the newly open-sourced SD third-generation model, emphasizing its improved architecture based on SDXL with enhanced VAE decoding and better understanding of prompts and element fusion. It also mentions the addition of a text encoder to the existing two CLIP encoders, increasing the model's parameters to 2 billion. The host guides viewers to the Huggingface website to discuss model variants, highlighting the differences in CLIP encoding and precision levels, and addresses the system requirements for running these models. The video then introduces a Chinese resource website 'Liblib' for model downloads and online generation, comparing it with Huggingface's offerings.
🔍 Deep Dive into ComfyUI Workflows and Model Loading
This paragraph delves into the specifics of ComfyUI's batch processing operations, detailing the process of loading models without CLIP encoding and the necessity of downloading additional CLIP models for encoding. It explains the negative prompt handling in the workflow, which is designed to reduce the prominence of negative prompts over the generation process. The video also touches on the sampling algorithms available in SD3 and the importance of choosing the right workflow for model pipelining. The host demonstrates generating images using official prompts and discusses adjustments to the CFG and sampling methods to achieve better results.
🎨 Exploring SD3's Text Encoding and Image Generation
The host explores the text encoding capabilities of SD3, highlighting the separation of CLIP models into three distinct components responsible for different aspects of image generation. The video compares the effects of using SD3's text encoding with previous methods, demonstrating the significant differences in the generated images. It also briefly mentions a third workflow for image upscaling, suggesting that it is straightforward and may not offer additional value. The video emphasizes the importance of using the correct prompts to leverage the full capabilities of the SD3 model.
🛠️ Batch Processing Techniques and Dynamic Prompts Plugin
This section introduces a plugin for dynamic prompt traversal and discusses the process of batch image generation. The host explains how to use the plugin with ComfyUI and suggests using 'Liblib' for downloading prompt cards to enhance the generation process. The video demonstrates how to set up the plugin with ComfyUI, merge different components into a batch process, and generate a series of images with varying styles and themes, revealing some of the challenges and inconsistencies in the results.
🌟 Model Comparison and Fine-Tuning for Better Results
The host conducts a comparative analysis of different models, including SDXL, SD3, and Cascade, using a custom test workflow. The video showcases the process of fine-tuning the models with various prompts and settings to improve image generation quality. It highlights the differences in style, detail, and overall aesthetics of the generated images, suggesting that while SD3 offers a larger dataset, it may not necessarily produce superior results compared to SDXL and Cascade models.
🔧 Adjusting Prompts and Testing Different Models
The video continues with further adjustments to the prompts and tests using different models to identify optimal settings for image generation. The host discusses the potential reasons for the varying quality of results and the possibility of configuration errors. It also mentions the use of 'Liblib' for online generation and the potential differences between local and online model performance, suggesting that further exploration and optimization are needed to fully utilize the capabilities of the SD3 model.
🌐 Online Generation Testing and Community Engagement
In the concluding part, the host tests the online generation feature of 'Liblib' using the same prompts and compares the results with local generation. The video highlights the convenience and potential benefits of using online platforms for model generation. The host also encourages viewers to share their experiences, optimizations, and questions through comments and community engagement, offering to share the custom workflow for further experimentation and discussion.
Mindmap
Keywords
💡SD3 model
💡ComfyUI
💡VAE decoding
💡Prompt words
💡CLIP encoding
💡Huggingface
💡FP16 precision
💡Batch processing
💡Liblib AI
💡Texture synthesis
💡Batch generation
Highlights
SD3模型基于SDXL基础上进行了训练,VAE解码部分进行了增强,通道提升至16。
SD3模型对题词的理解及元素融合更加完善,可以通过题词更精确控制画面部分。
SD3模型引入三种CLIP编码,新增文本编码器,增强了模型对文本的理解能力。
SD3模型训练数据量达到2B,参数量是SDXL的多倍,提升了模型性能。
huggingface官网提供了不同版本的SD3模型,包括不同精度的模型以适应不同硬件需求。
对于显存较小的用户,官方建议设置虚拟内存以运行SD3模型。
介绍了如何通过ComfyUI加载额外的CLIP模型以增强模型功能。
推荐了国内用户访问哩布哩布网站下载模型,资源丰富且访问速度快。
介绍了如何使用ComfyUI的批处理操作进行题词测试。
分析了SD3模型的负面提词处理方式,指出其强度降低的原因。
展示了SD3模型的采样算法和模型管道处理算法的调整方法。
使用官方提示词生成图像,并对生成效果进行了评价和调整建议。
介绍了如何使用ComfyUI的Dynamic Prompts插件进行题词遍历。
展示了如何通过ComfyUI进行批量图像生成,提高效率。
对比了SD3模型与SDXL和Cascade模型在图像生成上的效果差异。
提供了一个多模型比较的工作流,方便用户测试不同模型的表现。
讨论了SD3模型在不同场景下的生成效果,指出其在人物肖像上的不足。
分享了使用一键提词插件的体验,并指出其在SD3模型上的适用性问题。
总结了SD3模型作为基础模型的局限性,并提出了进一步优化的建议。
推荐了使用哩布哩布的在线生成功能,对比了本地生成与在线生成的效果。